
Generate data for Generalised Linear Models under model misspecification scenario
Source:R/Big_data.R
GenModelMissGLMdata.Rd
Function to simulate big data under Generalised Linear Models for the model misspecification scenario through any misspecification type.
Arguments
- N
the big data size
- X_Data
a matrix for the covariate data
- Misspecification
a vector of values for the misspecification
- Beta
a vector for the model parameters, including the intercept and misspecification term
- Var_Epsilon
variance value for the residuals
- family
a character vector for "linear", "logistic" and "poisson" regression from Generalised Linear Models
Details
Big data for the Generalised Linear Models are generated by the "linear", "logistic" and "poisson" regression types under model misspecification.
References
Adewale AJ, Wiens DP (2009). “Robust designs for misspecified logistic models.” Journal of Statistical Planning and Inference, 139(1), 3--15. Adewale AJ, Xu X (2010). “Robust designs for generalized linear models with possible overdispersion and misspecified link functions.” Computational statistics & data analysis, 54(4), 875--890.
Examples
Beta<-c(-1,0.75,0.75,1); Var_Epsilon<-0.5; family <- "linear"; N<-10000
X_1 <- replicate(2,stats::runif(n=N,min = -1,max = 1))
Temp<-Rfast::rowprods(X_1)
Misspecification <- (Temp-mean(Temp))/sqrt(mean(Temp^2)-mean(Temp)^2)
X_Data <- cbind(X0=1,X_1);
Results<-GenModelMissGLMdata(N,X_Data,Misspecification,Beta,Var_Epsilon,family)
Results<-GenModelMissGLMdata(N,X_Data,Misspecification,Beta,Var_Epsilon=NULL,family="logistic")
Results<-GenModelMissGLMdata(N,X_Data,Misspecification,Beta,Var_Epsilon=NULL,family="poisson")