Fitting the Beta-Correlated Binomial Distribution when binomial random variable, frequency, covariance, alpha and beta parameters are given
Source:R/BetaCorrBin.R
fitBetaCorrBin.Rd
The function will fit the Beta-Correlated Binomial Distribution when random variables, corresponding frequencies, covariance, alpha and beta parameters are given. It will provide the expected frequencies, chi-squared test statistics value, p value, and degree of freedom so that it can be seen if this distribution fits the data.
Arguments
- x
vector of binomial random variables.
- obs.freq
vector of frequencies.
- cov
single value for covariance.
- a
single value for alpha parameter.
- b
single value for beta parameter.
Value
The output of fitBetaCorrBin
gives the class format fitBCB
and fit
consisting a list
bin.ran.var
binomial random variables.
obs.freq
corresponding observed frequencies.
exp.freq
corresponding expected frequencies.
statistic
chi-squared test statistics.
df
degree of freedom.
p.value
probability value by chi-squared test statistic
corr
Correlation value.
fitBCB
fitted probability values of dBetaCorrBin
.
NegLL
Negative Log Likelihood value.
a
estimated shape parameter value a.
b
estimated shape parameter value b.
cov
estimated covariance value.
AIC
AIC value.
call
the inputs of the function.
Methods summary
, print
, AIC
, residuals
and fitted
can be used to extract specific outputs.
Details
$$obs.freq \ge 0$$ $$x = 0,1,2,..$$ $$-\infty < cov < +\infty$$ $$0 < a,b$$
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
References
Paul SR (1985). “A three-parameter generalization of the binomial distribution.” History and Philosophy of Logic, 14(6), 1497--1506.
Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEBetaCorrBin(x=No.D.D,freq=Obs.fre.1,cov=0.0050,a=10,b=10)
covBetaCorrBin <- bbmle::coef(parameters)[1]
aBetaCorrBin <- bbmle::coef(parameters)[2]
bBetaCorrBin <- bbmle::coef(parameters)[3]
#fitting when the random variable,frequencies,covariance, a and b are given
results <- fitBetaCorrBin(No.D.D,Obs.fre.1,covBetaCorrBin,aBetaCorrBin,bBetaCorrBin)
results
#> Call:
#> fitBetaCorrBin(x = No.D.D, obs.freq = Obs.fre.1, cov = covBetaCorrBin,
#> a = aBetaCorrBin, b = bBetaCorrBin)
#>
#> Chi-squared test for Beta-Correlated Binomial Distribution
#>
#> Observed Frequency : 47 54 43 40 40 41 39 95
#>
#> expected Frequency : 48.71 47.41 45.42 43.16 39.81 36.91 42.44 95.14
#>
#> estimated covariance value: 0.07068406
#>
#> estimated a parameter : 3.199448 , estimated b parameter : 2.632928
#>
#> X-squared : 2.0695 ,df : 4 ,p-value : 0.723
#extract AIC value
AIC(results)
#> [1] 1625.307
#extract fitted values
fitted(results)
#> [1] 48.71 47.41 45.42 43.16 39.81 36.91 42.44 95.14