Estimating the covariance, alpha and beta parameter values for Beta-Correlated Binomial Distribution
Source:R/BetaCorrBin.R
EstMLEBetaCorrBin.Rd
The function will estimate the covariance, alpha and beta parameter values using the maximum log likelihood method for the Beta-Correlated Binomial distribution when the binomial random variables and corresponding frequencies are given.
Arguments
- x
vector of binomial random variables.
- freq
vector of frequencies.
- cov
single value for covariance.
- a
single value for alpha parameter.
- b
single value for beta parameter.
- ...
mle2 function inputs except data and estimating parameter.
Value
EstMLEBetaCorrBin
here is used as a wrapper for the mle2
function of bbmle package
therefore output is of class of mle2.
Details
$$x = 0,1,2,...$$ $$freq \ge 0$$ $$-\infty < cov < +\infty$$ $$0 < a,b$$
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
References
Paul SR (1985). “A three-parameter generalization of the binomial distribution.” History and Philosophy of Logic, 14(6), 1497--1506.
Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEBetaCorrBin(x=No.D.D,freq=Obs.fre.1,cov=0.0050,a=10,b=10)
bbmle::coef(parameters) #extracting the parameters
#> cov a b
#> 0.07068406 3.19944807 2.63292837