R/Triangle.R
fitTriBin.Rd
The function will fit the Triangular Binomial distribution when random variables, corresponding frequencies and mode parameter are given. It will provide the expected frequencies, chi-squared test statistics value, p value, degree of freedom and over dispersion value so that it can be seen if this distribution fits the data.
fitTriBin(x,obs.freq,mode)
x | vector of binomial random variables. |
---|---|
obs.freq | vector of frequencies. |
mode | single value for mode. |
The output of fitTriBin
gives the class format fitTB
and fit
consisting a list
bin.ran.var
binomial random variables.
obs.freq
corresponding observed frequencies.
exp.freq
corresponding expected frequencies.
statistic
chi-squared test statistics value.
df
degree of freedom.
p.value
probability value by chi-squared test statistic.
fitTB
fitted probability values of dTriBin
.
NegLL
Negative Log Likelihood value.
mode
estimated mode value.
AIC
AIC value.
over.dis.para
over dispersion value.
call
the inputs of the function.
Methods summary
, print
, AIC
, residuals
and fitted
can be used to extract specific outputs.
$$0 < mode=c < 1$$ $$x = 0,1,2,...$$ $$0 < mode < 1$$ $$obs.freq \ge 0$$
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Horsnell, G. (1957). Economic acceptance sampling schemes. Journal of the Royal Statistical Society, Series A, 120:148-191.
Karlis, D. & Xekalaki, E., 2008. The Polygonal Distribution. In Advances in Mathematical and Statistical Modeling. Boston: Birkhuser Boston, pp. 21-33.
Available at: http://dx.doi.org/10.1007/978-0-8176-4626-4_2.
Okagbue, H. et al., 2014. Using the Average of the Extreme Values of a Triangular Distribution for a Transformation, and Its Approximant via the Continuous Uniform Distribution. British Journal of Mathematics & Computer Science, 4(24), pp.3497-3507.
Available at: http://www.sciencedomain.org/abstract.php?iid=699&id=6&aid=6427.
No.D.D <- 0:7 #assigning the random variables Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies modeTriBin <- EstMLETriBin(No.D.D,Obs.fre.1)$mode #assigning the extracted the mode value #fitting when the random variable,frequencies,mode value are given. results <- fitTriBin(No.D.D,Obs.fre.1,modeTriBin) results#> Call: #> fitTriBin(x = No.D.D, obs.freq = Obs.fre.1, mode = modeTriBin) #> #> Chi-squared test for Triangular Binomial Distribution #> #> Observed Frequency : 47 54 43 40 40 41 39 95 #> #> expected Frequency : 11.74 23.47 35.21 46.94 58.66 70.2 79.57 73.21 #> #> estimated Mode value: 0.944444 #> #> X-squared : 193.6159 ,df : 6 ,p-value : 0 #> #> over dispersion : 0.2308269#> [1] 882.6167#> [1] 11.74 23.47 35.21 46.94 58.66 70.20 79.57 73.21