These functions provide the ability for generating probability function values and cumulative probability function values for the Gamma Binomial Distribution.
dGammaBin(x,n,c,l)
x | vector of binomial random variables. |
---|---|
n | single value for no of binomial trials. |
c | single value for shape parameter c. |
l | single value for shape parameter l. |
The output of dGammaBin
gives a list format consisting
pdf
probability function values in vector form.
mean
mean of the Gamma Binomial Distribution.
var
variance of the Gamma Binomial Distribution.
over.dis.para
over dispersion value of the Gamma Binomial Distribution.
Mixing Gamma distribution with Binomial distribution will create the the Gamma Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.
The cumulative probability function is the summation of probability function values.
$$P_{GammaBin}[x]= {n \choose x} \sum_{j=0}^{n-x} {n-x \choose j} (-1)^j (\frac{c}{c+x+j})^l $$ $$c,l > 0$$ $$x = 0,1,2,...,n$$ $$n = 1,2,3,...$$
The mean, variance and over dispersion are denoted as $$E_{GammaBin}[x] = (\frac{c}{c+1})^l$$ $$Var_{GammaBin}[x] = n^2[(\frac{c}{c+2})^l - (\frac{c}{c+1})^{2l}] + n(\frac{c}{c+1})^l{1-)(\frac{c+1}{c+2})^l}$$ $$over dispersion= \frac{(\frac{c}{c+2})^l - (\frac{c}{c+1})^{2l}}{(\frac{c}{c+1})^l[1-(\frac{c}{c+1})^l]}$$
Grassia, A., 1977. On a family of distributions with argument between 0 and 1 obtained by transformation of the gamma and derived compound distributions. Australian Journal of Statistics, 19(2), pp.108-114.
#plotting the random variables and probability values col <- rainbow(5) a <- c(1,2,5,10,0.2) plot(0,0,main="Gamma Binomial probability function graph",xlab="Binomial random variable", ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))for (i in 1:5) { lines(0:10,dGammaBin(0:10,10,a[i],a[i])$pdf,col = col[i],lwd=2.85) points(0:10,dGammaBin(0:10,10,a[i],a[i])$pdf,col = col[i],pch=16) }dGammaBin(0:10,10,4,.2)$pdf #extracting the pdf values#> [1] 5.870615e-05 2.754357e-04 8.057584e-04 1.892811e-03 3.928276e-03 #> [6] 7.579979e-03 1.409128e-02 2.611031e-02 5.066078e-02 1.162261e-01 #> [11] 7.783705e-01dGammaBin(0:10,10,4,.2)$mean #extracting the mean#> [1] 9.563525dGammaBin(0:10,10,4,.2)$var #extracting the variance#> [1] 1.092227dGammaBin(0:10,10,4,.2)$over.dis.para #extracting the over dispersion value#> [1] 0.1796209#plotting the random variables and cumulative probability values col <- rainbow(4) a <- c(1,2,5,10) plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable", ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))for (i in 1:4) { lines(0:10,pGammaBin(0:10,10,a[i],a[i]),col = col[i]) points(0:10,pGammaBin(0:10,10,a[i],a[i]),col = col[i]) }#> [1] 5.870615e-05 3.341419e-04 1.139900e-03 3.032711e-03 6.960987e-03 #> [6] 1.454097e-02 2.863224e-02 5.474255e-02 1.054033e-01 2.216295e-01 #> [11] 1.000000e+00