Fitting the Triangular Binomial Distribution when binomial random variable, frequency and mode value are given
Source:R/Triangle.R
fitTriBin.Rd
The function will fit the Triangular Binomial distribution when random variables, corresponding frequencies and mode parameter are given. It will provide the expected frequencies, chi-squared test statistics value, p value, degree of freedom and over dispersion value so that it can be seen if this distribution fits the data.
Arguments
- x
vector of binomial random variables.
- obs.freq
vector of frequencies.
- mode
single value for mode.
Value
The output of fitTriBin
gives the class format fitTB
and fit
consisting a list
bin.ran.var
binomial random variables.
obs.freq
corresponding observed frequencies.
exp.freq
corresponding expected frequencies.
statistic
chi-squared test statistics value.
df
degree of freedom.
p.value
probability value by chi-squared test statistic.
fitTB
fitted probability values of dTriBin
.
NegLL
Negative Log Likelihood value.
mode
estimated mode value.
AIC
AIC value.
over.dis.para
over dispersion value.
call
the inputs of the function.
Methods summary
, print
, AIC
, residuals
and fitted
can be used to extract specific outputs.
Details
$$0 < mode=c < 1$$ $$x = 0,1,2,...$$ $$0 < mode < 1$$ $$obs.freq \ge 0$$
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
References
Horsnell G (1957). “Economical acceptance sampling schemes.” Journal of the Royal Statistical Society. Series A (General), 120(2), 148--201. Karlis D, Xekalaki E (2008). The polygonal distribution. Springer. Okagbue HI, Edeki SO, Opanuga AA, Oguntunde PE, Adeosun ME (2014). “Using the Average of the Extreme Values of a Triangular Distribution for a Transformation, and Its Approximant via the Continuous Uniform Distribution.” British Journal of Mathematics and Computer Science, 4(24), 3497.
Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
modeTriBin <- EstMLETriBin(No.D.D,Obs.fre.1)$mode #assigning the extracted the mode value
#fitting when the random variable,frequencies,mode value are given.
results <- fitTriBin(No.D.D,Obs.fre.1,modeTriBin)
results
#> Call:
#> fitTriBin(x = No.D.D, obs.freq = Obs.fre.1, mode = modeTriBin)
#>
#> Chi-squared test for Triangular Binomial Distribution
#>
#> Observed Frequency : 47 54 43 40 40 41 39 95
#>
#> expected Frequency : 11.74 23.47 35.21 46.94 58.66 70.2 79.57 73.21
#>
#> estimated Mode value: 0.944444
#>
#> X-squared : 193.6159 ,df : 6 ,p-value : 0
#>
#> over dispersion : 0.2308269
#extract AIC value
AIC(results)
#> [1] 1763.233
#extract fitted values
fitted(results)
#> [1] 11.74 23.47 35.21 46.94 58.66 70.20 79.57 73.21