Fitting the Multiplicative Binomial Distribution when binomial random variable, frequency, probability of success and theta parameter are given
Source:R/MultiBin.R
fitMultiBin.Rd
The function will fit the Multiplicative Binomial distribution when random variables, corresponding frequencies, probability of success and theta parameter are given. It will provide the expected frequencies, chi-squared test statistics value, p value and degree of freedom value so that it can be seen if this distribution fits the data.
Arguments
- x
vector of binomial random variables.
- obs.freq
vector of frequencies.
- p
single value for probability of success.
- theta
single value for theta parameter.
Value
The output of fitMultiBin
gives the class format fitMuB
and fit
consisting a list
bin.ran.var
binomial random variables.
obs.freq
corresponding observed frequencies.
exp.freq
corresponding expected frequencies.
statistic
chi-squared test statistics.
df
degree of freedom.
p.value
probability value by chi-squared test statistic.
fitMuB
fitted probability values of dMultiBin
.
NegLL
Negative Log Likelihood value.
p
estimated probability value.
theta
estimated theta parameter value.
AIC
AIC value.
call
the inputs of the function.
Methods summary
, print
, AIC
, residuals
and fitted
can be used to extract specific outputs.
References
Johnson NL, Kemp AW, Kotz S (2005). Univariate discrete distributions, volume 444. John Wiley and Sons. Kupper LL, Haseman JK (1978). “The use of a correlated binomial model for the analysis of certain toxicological experiments.” Biometrics, 69--76. Paul SR (1985). “A three-parameter generalization of the binomial distribution.” History and Philosophy of Logic, 14(6), 1497--1506.
Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEMultiBin(x=No.D.D,freq=Obs.fre.1,p=0.1,theta=.3)
pMultiBin <- bbmle::coef(parameters)[1] #assigning the estimated probability value
thetaMultiBin <- bbmle::coef(parameters)[2] #assigning the estimated theta value
#fitting when the random variable,frequencies,probability and theta are given
results <- fitMultiBin(No.D.D,Obs.fre.1,pMultiBin,thetaMultiBin)
results
#> Call:
#> fitMultiBin(x = No.D.D, obs.freq = Obs.fre.1, p = pMultiBin,
#> theta = thetaMultiBin)
#>
#> Chi-squared test for Multiplicative Binomial Distribution
#>
#> Observed Frequency : 47 54 43 40 40 41 39 95
#>
#> expected Frequency : 54.3 49.54 38.86 33.97 35.74 45.26 63.86 77.48
#>
#> estimated p value : 0.5126962 ,estimated theta parameter : 0.7060546
#>
#> X-squared : 17.4425 ,df : 5 ,p-value : 0.0037
#extracting the AIC value
AIC(results)
#> [1] 1639.987
#extract fitted values
fitted(results)
#> [1] 54.30 49.54 38.86 33.97 35.74 45.26 63.86 77.48