Fitting the McDonald Generalized Beta Binomial distribution when binomial random variable, frequency and shape parameters are given
Source:R/Gbeta1.R
fitMcGBB.Rd
The function will fit the McDonald Generalized Beta Binomial Distribution when random variables, corresponding frequencies and shape parameters are given. It will provide the expected frequencies, chi-squared test statistics value, p value, degree of freedom and over dispersion value so that it can be seen if this distribution fits the data.
Arguments
- x
vector of binomial random variables.
- obs.freq
vector of frequencies.
- a
single value for shape parameter alpha representing a.
- b
single value for shape parameter beta representing b.
- c
single value for shape parameter gamma representing c.
Value
The output of fitMcGBB
gives the class format fitMB
and fit
consisting a list
bin.ran.var
binomial random variables.
obs.freq
corresponding observed frequencies.
exp.freq
corresponding expected frequencies.
statistic
chi-squared test statistics.
df
degree of freedom.
p.value
probability value by chi-squared test statistic.
fitMB
fitted values of dMcGBB
.
NegLL
Negative Log Likelihood value.
a
estimated value for alpha parameter as a.
b
estimated value for beta parameter as b.
c
estimated value for gamma parameter as c.
AIC
AIC value.
over.dis.para
over dispersion value.
call
the inputs of the function.
Methods summary
, print
, AIC
, residuals
and fitted
can be used to
extract specific outputs.
Details
$$0 < a,b,c$$ $$x = 0,1,2,...$$ $$obs.freq \ge 0$$
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
References
Manoj C, Wijekoon P, Yapa RD (2013). “The McDonald generalized beta-binomial distribution: A new binomial mixture distribution and simulation based comparison with its nested distributions in handling overdispersion.” International journal of statistics and probability, 2(2), 24. Janiffer NM, Islam A, Luke O, others (2014). “Estimating Equations for Estimation of Mcdonald Generalized Beta—Binomial Parameters.” Open Journal of Statistics, 4(09), 702. Roozegar R, Tahmasebi S, Jafari AA (2017). “The McDonald Gompertz distribution: properties and applications.” Communications in Statistics-Simulation and Computation, 46(5), 3341--3355.
Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
if (FALSE) {
#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEMcGBB(x=No.D.D,freq=Obs.fre.1,a=0.1,b=0.1,c=3.2)
aMcGBB <- bbmle::coef(parameters)[1] #assigning the estimated a
bMcGBB <- bbmle::coef(parameters)[2] #assigning the estimated b
cMcGBB <- bbmle::coef(parameters)[3] #assigning the estimated c
#fitting when the random variable,frequencies,shape parameter values are given.
results <- fitMcGBB(No.D.D,Obs.fre.1,aMcGBB,bMcGBB,cMcGBB)
results
#extracting the expected frequencies
fitted(results)
#extracting the residuals
residuals(results)
}