Fitting the Gaussian Hypergeometric Generalized Beta Binomial Distribution when binomial random variable, frequency and shape parameters a,b and c are given
Source:R/GHGbeta.R
fitGHGBB.Rd
The function will fit the Gaussian Hypergeometric Generalized Beta Binomial Distribution when random variables, corresponding frequencies and shape parameters are given. It will provide the expected frequencies, chi-squared test statistics value, p value, degree of freedom and over dispersion value so that it can be seen if this distribution fits the data.
Arguments
- x
vector of binomial random variables.
- obs.freq
vector of frequencies.
- a
single value for shape parameter alpha representing a.
- b
single value for shape parameter beta representing b.
- c
single value for shape parameter lambda representing c.
Value
The output of fitGHGBB
gives the class format fitGB
and fit
consisting a list
bin.ran.var
binomial random variables.
obs.freq
corresponding observed frequencies.
exp.freq
corresponding expected frequencies.
statistic
chi-squared test statistics.
df
degree of freedom.
p.value
probability value by chi-squared test statistic.
fitGB
fitted values of dGHGBB
.
NegLL
Negative Loglikelihood value.
a
estimated value for alpha parameter as a.
b
estimated value for beta parameter as b.
c
estimated value for gamma parameter as c.
AIC
AIC value.
over.dis.para
over dispersion value.
call
the inputs of the function.
Methods summary
, print
, AIC
, residuals
and fitted
can be used
to extract specific outputs.
Details
$$0 < a,b,c$$ $$x = 0,1,2,...$$ $$obs.freq \ge 0$$
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
References
Rodriguez-Avi J, Conde-Sanchez A, Saez-Castillo AJ, Olmo-Jimenez MJ (2007). “A generalization of the beta--binomial distribution.” Journal of the Royal Statistical Society Series C: Applied Statistics, 56(1), 51--61. Pearson JW (2009). Computation of hypergeometric functions. Ph.D. thesis, University of Oxford.
Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLEGHGBB(No.D.D,Obs.fre.1,0.1,20,1.3)
bbmle::coef(parameters) #extracting the parameters
#> a b c
#> 1.3507379 0.3245459 0.7005111
aGHGBB <- bbmle::coef(parameters)[1] #assigning the estimated a
bGHGBB <- bbmle::coef(parameters)[2] #assigning the estimated b
cGHGBB <- bbmle::coef(parameters)[3] #assigning the estimated c
#fitting when the random variable,frequencies,shape parameter values are given.
results <- fitGHGBB(No.D.D,Obs.fre.1,aGHGBB,bGHGBB,cGHGBB)
results
#> Call:
#> fitGHGBB(x = No.D.D, obs.freq = Obs.fre.1, a = aGHGBB, b = bGHGBB,
#> c = cGHGBB)
#>
#> Chi-squared test for Gaussian Hypergeometric Generalized Beta-Binomial Distribution
#>
#> Observed Frequency : 47 54 43 40 40 41 39 95
#>
#> expected Frequency : 47.87 50.14 46.52 42.08 38.58 37.32 41.78 94.71
#>
#> estimated a parameter : 1.350738 ,estimated b parameter : 0.3245459 ,
#>
#> estimated c parameter : 0.7005111
#>
#> X-squared : 1.2831 ,df : 4 ,p-value : 0.8642
#>
#> over dispersion : 0.4324812
#extracting the expected frequencies
fitted(results)
#> [1] 47.87 50.14 46.52 42.08 38.58 37.32 41.78 94.71
#extracting the residuals
residuals(results)
#> [1] -0.87 3.86 -3.52 -2.08 1.42 3.68 -2.78 0.29