Fitting the Correlated Binomial Distribution when binomial random variable, frequency, probability of success and covariance are given
Source:R/CorrBin.R
fitCorrBin.Rd
The function will fit the Correlated Binomial Distribution when random variables, corresponding frequencies, probability of success and covariance are given. It will provide the expected frequencies, chi-squared test statistics value, p value, and degree of freedom so that it can be seen if this distribution fits the data.
Arguments
- x
vector of binomial random variables.
- obs.freq
vector of frequencies.
- p
single value for probability of success.
- cov
single value for covariance.
Value
The output of fitCorrBin
gives the class format fitCB
and fit
consisting a list
bin.ran.var
binomial random variables.
obs.freq
corresponding observed frequencies.
exp.freq
corresponding expected frequencies.
statistic
chi-squared test statistics.
df
degree of freedom.
p.value
probability value by chi-squared test statistic.
corr
Correlation value.
fitCB
fitted probability values of dCorrBin
.
NegLL
Negative Log Likelihood value.
AIC
AIC value.
call
the inputs of the function.
Methods summary
, print
, AIC
, residuals
and fitted
can be used to extract specific outputs.
Details
$$obs.freq \ge 0$$ $$x = 0,1,2,..$$ $$0 < p < 1$$ $$-\infty < cov < +\infty$$
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
References
Johnson NL, Kemp AW, Kotz S (2005). Univariate discrete distributions, volume 444. John Wiley and Sons. Kupper LL, Haseman JK (1978). “The use of a correlated binomial model for the analysis of certain toxicological experiments.” Biometrics, 69--76. Paul SR (1985). “A three-parameter generalization of the binomial distribution.” History and Philosophy of Logic, 14(6), 1497--1506. Morel JG, Neerchal NK (2012). Overdispersion models in SAS. SAS Publishing.
Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLECorrBin(x=No.D.D,freq=Obs.fre.1,p=0.5,cov=0.0050)
pCorrBin <- bbmle::coef(parameters)[1]
covCorrBin <- bbmle::coef(parameters)[2]
#fitting when the random variable,frequencies,probability and covariance are given
results <- fitCorrBin(No.D.D,Obs.fre.1,pCorrBin,covCorrBin)
results
#> Call:
#> fitCorrBin(x = No.D.D, obs.freq = Obs.fre.1, p = pCorrBin, cov = covCorrBin)
#>
#> Chi-squared test for Correlated Binomial Distribution
#>
#> Observed Frequency : 47 54 43 40 40 41 39 95
#>
#> expected Frequency : 10.7 50.1 79.85 45.84 24.87 74.29 84.07 29.28
#>
#> estimated p value : 0.5469539 ,estimated cov value : 0.05714648
#>
#> X-squared : 336.9971 ,df : 5 ,p-value : 0
#extracting the AIC value
AIC(results)
#> [1] 1857.326
#extract fitted values
fitted(results)
#> [1] 10.70 50.10 79.85 45.84 24.87 74.29 84.07 29.28