Fitting the COM Poisson Binomial Distribution when binomial random variable, frequency, probability of success and v parameter are given
Source:R/COMPBin.R
fitCOMPBin.Rd
The function will fit the COM Poisson Binomial Distribution when random variables, corresponding frequencies, probability of success and v parameter are given. It will provide the expected frequencies, chi-squared test statistics value, p value, and degree of freedom so that it can be seen if this distribution fits the data.
Arguments
- x
vector of binomial random variables.
- obs.freq
vector of frequencies.
- p
single value for probability of success.
- v
single value for v.
Value
The output of fitCOMPBin
gives the class format fitCPB
and fit
consisting a list
bin.ran.var
binomial random variables.
obs.freq
corresponding observed frequencies.
exp.freq
corresponding expected frequencies.
statistic
chi-squared test statistics.
df
degree of freedom.
p.value
probability value by chi-squared test statistic.
fitCPB
fitted probability values of dCOMPBin
.
NegLL
Negative Log Likelihood value.
p
estimated probability value.
v
estimated v parameter value.
AIC
AIC value.
call
the inputs of the function.
Methods summary
, print
, AIC
, residuals
and fitted
can be used to extract specific outputs.
Details
$$obs.freq \ge 0$$ $$x = 0,1,2,..$$ $$0 < p < 1$$ $$-\infty < v < +\infty$$
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
References
Borges P, Rodrigues J, Balakrishnan N, Bazan J (2014). “A COM--Poisson type generalization of the binomial distribution and its properties and applications.” Statistics and Probability Letters, 87, 158--166.
Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
#estimating the parameters using maximum log likelihood value and assigning it
parameters <- EstMLECOMPBin(x=No.D.D,freq=Obs.fre.1,p=0.5,v=0.050)
pCOMPBin <- bbmle::coef(parameters)[1]
vCOMPBin <- bbmle::coef(parameters)[2]
#fitting when the random variable,frequencies,probability and v parameter are given
results <- fitCOMPBin(No.D.D,Obs.fre.1,pCOMPBin,vCOMPBin)
results
#> Call:
#> fitCOMPBin(x = No.D.D, obs.freq = Obs.fre.1, p = pCOMPBin, v = vCOMPBin)
#>
#> Chi-squared test for COM Poisson Binomial Distribution
#>
#> Observed Frequency : 47 54 43 40 40 41 39 95
#>
#> expected Frequency : 57.21 43.81 38.52 37.28 39.23 44.86 56.47 81.63
#>
#> estimated p value : 0.5126926 ,estimated v parameter : -0.1632806
#>
#> X-squared : 12.8535 ,df : 5 ,p-value : 0.0248
#extracting the AIC value
AIC(results)
#> [1] 1634.623
#extract fitted values
fitted(results)
#> [1] 57.21 43.81 38.52 37.28 39.23 44.86 56.47 81.63