Negative Log Likelihood value of McDonald Generalized Beta Binomial Distribution
Source:R/Gbeta1.R
NegLLMcGBB.Rd
This function will calculate the negative log likelihood value when the vector of binomial random variables and vector of corresponding frequencies are given with the shape parameters a,b and c.
Arguments
- x
vector of binomial random variables.
- freq
vector of frequencies.
- a
single value for shape parameter alpha representing as a.
- b
single value for shape parameter beta representing as b.
- c
single value for shape parameter gamma representing as c.
References
Manoj C, Wijekoon P, Yapa RD (2013). “The McDonald generalized beta-binomial distribution: A new binomial mixture distribution and simulation based comparison with its nested distributions in handling overdispersion.” International journal of statistics and probability, 2(2), 24. Janiffer NM, Islam A, Luke O, others (2014). “Estimating Equations for Estimation of Mcdonald Generalized Beta—Binomial Parameters.” Open Journal of Statistics, 4(09), 702. Roozegar R, Tahmasebi S, Jafari AA (2017). “The McDonald Gompertz distribution: properties and applications.” Communications in Statistics-Simulation and Computation, 46(5), 3341--3355.
Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
NegLLMcGBB(No.D.D,Obs.fre.1,.2,.3,1) #acquiring the negative log likelihood value
#> [1] 897.6074