Estimating the probability of success and alpha for Additive Binomial Distribution
Source:R/AddBin.R
EstMLEAddBin.Rd
The function will estimate the probability of success and alpha using the maximum log likelihood method for the Additive Binomial distribution when the binomial random variables and corresponding frequencies are given.
Value
The output of EstMLEAddBin
will produce the class mlAB
and ml
with a list consisting
min
Negative Log Likelihood value.
p
estimated probability of success.
alpha
estimated alpha parameter.
AIC
AIC value.
call
the inputs for the function.
Methods print
, summary
, coef
and AIC
can be used to extract specific outputs.
Details
$$freq \ge 0$$ $$x = 0,1,2,..$$
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
References
Johnson NL, Kemp AW, Kotz S (2005). Univariate discrete distributions, volume 444. John Wiley and Sons. Kupper LL, Haseman JK (1978). “The use of a correlated binomial model for the analysis of certain toxicological experiments.” Biometrics, 69--76. Paul SR (1985). “A three-parameter generalization of the binomial distribution.” History and Philosophy of Logic, 14(6), 1497--1506. Morel JG, Neerchal NK (2012). Overdispersion models in SAS. SAS Publishing.
Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
if (FALSE) {
#estimating the probability value and alpha value
results <- EstMLEAddBin(No.D.D,Obs.fre.1)
#printing the summary of results
summary(results)
#extracting the estimated parameters
coef(results)
}