Estimating the shape parameters a and b for Beta-Binomial Distribution
Source:R/Beta.R
EstMGFBetaBin.Rd
The functions will estimate the shape parameters using the maximum log likelihood method and moment generating function method for the Beta-Binomial distribution when the binomial random variables and corresponding frequencies are given.
Value
The output of EstMGFBetaBin
will produce the class mgf
format consisting
a
shape parameter of beta distribution representing for alpha
b
shape parameter of beta distribution representing for beta
min
Negative loglikelihood value
AIC
AIC value
call
the inputs for the function
Methods print
, summary
, coef
and AIC
can be used to extract
specific outputs.
Details
$$a,b > 0$$ $$x = 0,1,2,...$$ $$freq \ge 0$$
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
References
Young-Xu Y, Chan KA (2008). “Pooling overdispersed binomial data to estimate event rate.” BMC medical research methodology, 8, 1--12. Trenkler G (1996). “Continuous univariate distributions.” Computational Statistics and Data Analysis, 21(1), 119--119. HUGHES G, MADDEN L (1993). “Using the beta-binomial distribution to describe aggegated patterns of disease incidence.” Phytopathology, 83(7), 759--763.
Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
#estimating the parameters using maximum log likelihood value and assigning it
estimate <- EstMLEBetaBin(No.D.D,Obs.fre.1,a=0.1,b=0.1)
bbmle::coef(estimate) #extracting the parameters
#> a b
#> 0.7229420 0.5808483
#estimating the parameters using moment generating function methods
results <- EstMGFBetaBin(No.D.D,Obs.fre.1)
# extract the estimated parameters and summary
coef(results)
#> a b
#> 0.7161628 0.5963324
summary(results)
#> Coefficients:
#> a b
#> 0.7161628 0.5963324
#>
#> Negative Log-likelihood : 813.5872
#>
#> AIC : 1631.174
AIC(results) #show the AIC value
#> [1] 1631.174