
Estimating the shape parameters a and b for Beta-Binomial Distribution
Source:R/Beta.R
EstMGFBetaBin.RdThe functions will estimate the shape parameters using the maximum log likelihood method and moment generating function method for the Beta-Binomial distribution when the binomial random variables and corresponding frequencies are given.
Value
The output of EstMGFBetaBin will produce the class mgf format consisting
a shape parameter of beta distribution representing for alpha
b shape parameter of beta distribution representing for beta
min Negative loglikelihood value
AIC AIC value
call the inputs for the function
Methods print, summary, coef and AIC can be used to extract
specific outputs.
Details
$$a,b > 0$$ $$x = 0,1,2,...$$ $$freq \ge 0$$
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
References
Young-Xu Y, Chan KA (2008). “Pooling overdispersed binomial data to estimate event rate.” BMC medical research methodology, 8, 1--12. Trenkler G (1996). “Continuous univariate distributions.” Computational Statistics and Data Analysis, 21(1), 119--119. HUGHES G, MADDEN L (1993). “Using the beta-binomial distribution to describe aggegated patterns of disease incidence.” Phytopathology, 83(7), 759--763.
Examples
No.D.D <- 0:7 #assigning the random variables
Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies
#estimating the parameters using maximum log likelihood value and assigning it
estimate <- EstMLEBetaBin(No.D.D,Obs.fre.1,a=0.1,b=0.1)
bbmle::coef(estimate) #extracting the parameters
#> a b
#> 0.7229420 0.5808483
#estimating the parameters using moment generating function methods
results <- EstMGFBetaBin(No.D.D,Obs.fre.1)
# extract the estimated parameters and summary
coef(results)
#> a b
#> 0.7161628 0.5963324
summary(results)
#> Coefficients:
#> a b
#> 0.7161628 0.5963324
#>
#> Negative Log-likelihood : 813.5872
#>
#> AIC : 1631.174
AIC(results) #show the AIC value
#> [1] 1631.174