R/MultiBin.R
fitMultiBin.Rd
The function will fit the Multiplicative Binomial distribution when random variables, corresponding frequencies, probability of success and theta parameter are given. It will provide the expected frequencies, chi-squared test statistics value, p value and degree of freedom value so that it can be seen if this distribution fits the data.
fitMultiBin(x,obs.freq,p,theta)
x | vector of binomial random variables. |
---|---|
obs.freq | vector of frequencies. |
p | single value for probability of success. |
theta | single value for theta parameter. |
The output of fitMultiBin
gives the class format fitMuB
and fit
consisting a list
bin.ran.var
binomial random variables.
obs.freq
corresponding observed frequencies.
exp.freq
corresponding expected frequencies.
statistic
chi-squared test statistics.
df
degree of freedom.
p.value
probability value by chi-squared test statistic.
fitMuB
fitted probability values of dMultiBin
.
NegLL
Negative Log Likelihood value.
p
estimated probability value.
theta
estimated theta parameter value.
AIC
AIC value.
call
the inputs of the function.
Methods summary
, print
, AIC
, residuals
and fitted
can be used to extract specific outputs.
$$obs.freq \ge 0$$ $$x = 0,1,2,..$$ $$0 < p < 1$$ $$0 < theta $$
Johnson, N. L., Kemp, A. W., & Kotz, S. (2005). Univariate discrete distributions (Vol. 444). Hoboken, NJ: Wiley-Interscience.
L. L. Kupper, J.K.H., 1978. The Use of a Correlated Binomial Model for the Analysis of Certain Toxicological Experiments. Biometrics, 34(1), pp.69-76.
Paul, S.R., 1985. A three-parameter generalization of the binomial distribution. Communications in Statistics - Theory and Methods, 14(6), pp.1497-1506.
Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990.
No.D.D <- 0:7 #assigning the random variables Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies #estimating the parameters using maximum log likelihood value and assigning it parameters <- EstMLEMultiBin(x=No.D.D,freq=Obs.fre.1,p=0.1,theta=.3) pMultiBin <- bbmle::coef(parameters)[1] #assigning the estimated probability value thetaMultiBin <- bbmle::coef(parameters)[2] #assigning the estimated theta value #fitting when the random variable,frequencies,probability and theta are given results <- fitMultiBin(No.D.D,Obs.fre.1,pMultiBin,thetaMultiBin) results#> Call: #> fitMultiBin(x = No.D.D, obs.freq = Obs.fre.1, p = pMultiBin, #> theta = thetaMultiBin) #> #> Chi-squared test for Multiplicative Binomial Distribution #> #> Observed Frequency : 47 54 43 40 40 41 39 95 #> #> expected Frequency : 54.3 49.54 38.86 33.97 35.74 45.26 63.86 77.48 #> #> estimated p value : 0.5126962 ,estimated theta parameter : 0.7060546 #> #> X-squared : 17.4425 ,df : 5 ,p-value : 0.0037#> p #> 821.9933#> [1] 54.30 49.54 38.86 33.97 35.74 45.26 63.86 77.48