R/COMPBin.R
fitCOMPBin.RdThe function will fit the COM Poisson Binomial Distribution when random variables, corresponding frequencies, probability of success and v parameter are given. It will provide the expected frequencies, chi-squared test statistics value, p value, and degree of freedom so that it can be seen if this distribution fits the data.
fitCOMPBin(x,obs.freq,p,v)
| x | vector of binomial random variables. |
|---|---|
| obs.freq | vector of frequencies. |
| p | single value for probability of success. |
| v | single value for v. |
The output of fitCOMPBin gives the class format fitCPB and fit consisting a list
bin.ran.var binomial random variables.
obs.freq corresponding observed frequencies.
exp.freq corresponding expected frequencies.
statistic chi-squared test statistics.
df degree of freedom.
p.value probability value by chi-squared test statistic.
fitCPB fitted probability values of dCOMPBin.
NegLL Negative Log Likelihood value.
p estimated probability value.
v estimated v parameter value.
AIC AIC value.
call the inputs of the function.
Methods summary, print, AIC, residuals and fitted
can be used to extract specific outputs.
$$obs.freq \ge 0$$ $$x = 0,1,2,..$$ $$0 < p < 1$$ $$-\infty < v < +\infty$$
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Borges, P., Rodrigues, J., Balakrishnan, N. and Bazan, J., 2014. A COM-Poisson type generalization of the binomial distribution and its properties and applications. Statistics & Probability Letters, 87, pp.158-166.
Available at: http://conteudo.icmc.usp.br/CMS/Arquivos/arquivos_enviados/BIBLIOTECA_113_NSE_90.pdf
No.D.D <- 0:7 #assigning the random variables Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies #estimating the parameters using maximum log likelihood value and assigning it parameters <- EstMLECOMPBin(x=No.D.D,freq=Obs.fre.1,p=0.5,v=0.050) pCOMPBin <- bbmle::coef(parameters)[1] vCOMPBin <- bbmle::coef(parameters)[2] #fitting when the random variable,frequencies,probability and v parameter are given results <- fitCOMPBin(No.D.D,Obs.fre.1,pCOMPBin,vCOMPBin) results#> Call: #> fitCOMPBin(x = No.D.D, obs.freq = Obs.fre.1, p = pCOMPBin, v = vCOMPBin) #> #> Chi-squared test for COM Poisson Binomial Distribution #> #> Observed Frequency : 47 54 43 40 40 41 39 95 #> #> expected Frequency : 57.21 43.81 38.52 37.28 39.23 44.86 56.47 81.63 #> #> estimated p value : 0.5126926 ,estimated v parameter : -0.1632806 #> #> X-squared : 12.8535 ,df : 5 ,p-value : 0.0248#> v #> 819.3116#> [1] 57.21 43.81 38.52 37.28 39.23 44.86 56.47 81.63