R/BetaCorrBin.R
fitBetaCorrBin.Rd
The function will fit the Beta-Correlated Binomial Distribution when random variables, corresponding frequencies, covariance, alpha and beta parameters are given. It will provide the expected frequencies, chi-squared test statistics value, p value, and degree of freedom so that it can be seen if this distribution fits the data.
fitBetaCorrBin(x,obs.freq,cov,a,b)
x | vector of binomial random variables. |
---|---|
obs.freq | vector of frequencies. |
cov | single value for covariance. |
a | single value for alpha parameter. |
b | single value for beta parameter. |
The output of fitBetaCorrBin
gives the class format fitBCB
and fit
consisting a list
bin.ran.var
binomial random variables.
obs.freq
corresponding observed frequencies.
exp.freq
corresponding expected frequencies.
statistic
chi-squared test statistics.
df
degree of freedom.
p.value
probability value by chi-squared test statistic
corr
Correlation value.
fitBCB
fitted probability values of dBetaCorrBin
.
NegLL
Negative Log Likelihood value.
a
estimated shape parameter value a.
b
estimated shape parameter value b.
cov
estimated covariance value.
AIC
AIC value.
call
the inputs of the function.
Methods summary
, print
, AIC
, residuals
and fitted
can be used to extract specific outputs.
$$obs.freq \ge 0$$ $$x = 0,1,2,..$$ $$-\infty < cov < +\infty$$ $$0 < a,b$$
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Paul, S.R., 1985. A three-parameter generalization of the binomial distribution. Communications in Statistics - Theory and Methods, 14(6), pp.1497-1506.
Available at: http://www.tandfonline.com/doi/abs/10.1080/03610928508828990 .
No.D.D <- 0:7 #assigning the random variables Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies #estimating the parameters using maximum log likelihood value and assigning it parameters <- EstMLEBetaCorrBin(x=No.D.D,freq=Obs.fre.1,cov=0.0050,a=10,b=10) covBetaCorrBin <- bbmle::coef(parameters)[1] aBetaCorrBin <- bbmle::coef(parameters)[2] bBetaCorrBin <- bbmle::coef(parameters)[3] #fitting when the random variable,frequencies,covariance, a and b are given results <- fitBetaCorrBin(No.D.D,Obs.fre.1,covBetaCorrBin,aBetaCorrBin,bBetaCorrBin) results#> Call: #> fitBetaCorrBin(x = No.D.D, obs.freq = Obs.fre.1, cov = covBetaCorrBin, #> a = aBetaCorrBin, b = bBetaCorrBin) #> #> Chi-squared test for Beta-Correlated Binomial Distribution #> #> Observed Frequency : 47 54 43 40 40 41 39 95 #> #> expected Frequency : 48.71 47.41 45.42 43.16 39.81 36.91 42.44 95.14 #> #> estimated covariance value: 0.07068406 #> #> estimated a parameter : 3.199448 , estimated b parameter : 2.632928 #> #> X-squared : 2.0695 ,df : 4 ,p-value : 0.723#> a #> 815.6536#> [1] 48.71 47.41 45.42 43.16 39.81 36.91 42.44 95.14