R/Beta.R
EstMLEBetaBin.Rd
The functions will estimate the shape parameters using the maximum log likelihood method and moment generating function method for the Beta-Binomial distribution when the binomial random variables and corresponding frequencies are given.
EstMLEBetaBin(x,freq,a,b,...)
x | vector of binomial random variables. |
---|---|
freq | vector of frequencies. |
a | single value for shape parameter alpha representing as a. |
b | single value for shape parameter beta representing as b. |
... | mle2 function inputs except data and estimating parameter. |
EstMLEBetaBin
here is used as a wrapper for the mle2
function of bbmle package
therefore output is of class of mle2.
$$a,b > 0$$ $$x = 0,1,2,...$$ $$freq \ge 0$$
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Young-Xu, Y. & Chan, K.A., 2008. Pooling overdispersed binomial data to estimate event rate. BMC medical research methodology, 8(1), p.58.
Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2538541&tool=pmcentrez&rendertype=abstract.
Trenkler, G., 1996. Continuous univariate distributions. Computational Statistics & Data Analysis, 21(1), p.119.
Available at: http://linkinghub.elsevier.com/retrieve/pii/0167947396900158.
Hughes, G., 1993. Using the Beta-Binomial Distribution to Describe Aggregated Patterns of Disease Incidence. Phytopathology, 83(9), p.759.
Available at: http://www.apsnet.org/publications/phytopathology/backissues/Documents/1993Abstracts/Phyto_83_759.htm
No.D.D <- 0:7 #assigning the random variables Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies #estimating the parameters using maximum log likelihood value and assigning it estimate <- EstMLEBetaBin(No.D.D,Obs.fre.1,a=0.1,b=0.1) bbmle::coef(estimate) #extracting the parameters#> a b #> 0.7229420 0.5808483#> Call: #> EstMGFBetaBin(x = No.D.D, freq = Obs.fre.1) #> #> Coefficients: #> a b #> 0.7161628 0.5963324